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The Three-Dimensional Weak Form of the Conjugate
Gradient FFT Method for Solving Scattering
Problems

Peter Zwamborn and Peter M. van den Berg

Abstract—The problem of electromagnetic scattering by a
three-dimensional dielectric object can be formulated in terms
of a hypersingular integral equation, in which a grad-div op-
erator acts on a vector potential. The vector potential is a spa-
tial convolution of the free space Green’s function and the con-
trast source over the domain of interest. A weak form of the
integral equation for the relevant unknown quantity is obtained
by testing it with appropriate testing functions. As next step,
the vector potential is expanded in a sequeance of the appropri-
ate expansion functions and the grad-div operator is integrated
analytically over the scattering object domain only. A weak
form of the singular Green’s function has been used by intro-
ducing its spherical mean. As a result, the spatial convolution
can be carried out numerically using a trapezoidal integration
rule. This method shows excellent numerical performance.

I. INTRODUCTION

URING the past several years considerable effort has
been put into the development of computational
techniques for handling the scattering and diffraction of
electromagnetic waves by an object. We can distinguish
between global techniques (e.g., the use of wave function
expansions and integral equations) and local techniques
(finite-difference and finite-elements methods). One of the
extensively utilized and most versatile global methods is
the domain-integral-equation technique. It takes into ac-
count that the irradiated object is present in free space and
that it manifests itself through the presence of secondary
sources of contrast currents. Numerous methods have been
developed, and it is not our objective 1o survey them all.
Instead we concentrate on the k-space methods. It is our
opinion that methods of this type are applicable for three-
dimensional electromagnetic scattering problems owing
to their storage and computational efficiency.
The problem of the electromagnetic scattering by an in-
homogeneous dielectric object is formulated in terms of
an integral equation for the electric field over the domain
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of the object. The first method for solving the electric-
field integral equation over the domain of a dielectric ob-
ject was developed by Richmond for the two-dimensional
TM case [1], and for the two-dimensional TE case [2].
Here the method of moments has been used with pulse
expansion functions and point matching. The method of
moments requires the inversion of a (large) matrix, lim-
iting the application of this method. This problem has been
circumvented by using a conjugate gradient iterative tech-
nique [3], [4]. Bojarski has introduced the k-space
method, obtaining an iterative approach that reduces the
storage and the computation time by using a Fast Fourier
Transform algorithm for the computation of the spatial
convolution that occurs in the integral equation. A com-
prehensive review of Bojarski’s work, together with the
appropriate references to his k-space frequency domain
method, can be found in his 1982 k-space time domain
paper [5]. Subsequently, the conjugate gradient method
combined with the Fast Fourier Transform has been de-
veloped for various configurations [6]-[16]. For the three-
dimensional problems and the two-dimensional case of TE
polarization, applicability of this conjugate gradient FFT
method using pulse expansion functions casts some seri-
ous doubts [17]-[19]. The operator involved consists of a
grad-div operator that acts on a vector potential. The vec-
tor potential is an integral of the product of a Green’s
function and the electric contrast current density inside
the scattering object. The vector potential is a spatial con-
volution. In the spectral Fourier domain this convolution
is algebraic: a simple product. Recently, the weak for-
mulation of the conjugate gradient FFT method has proved
to be an efficient and accurate scheme for solving two-
dimensional TE scattering by strongly inhomogeneous
lossy dielectric objects [20]. Therefore, in this present pa-
per, we present a weak formulation of the domain-integral
equation for the modeling of full vectorial, three-dimen-
sional, electromagnetic scattering problems. The domain-
integral equation that is obtained in its strong form is
weakened by testing it with appropriate testing functions.
This weak form is the operator equation to be solved by
a CGFFT method. The advantages of this procedure are,
firstly, that the grad-div operator acting on the vector po-
tential is integrated analytically over the domain of the
dielectric object only and, secondly, that we have main-
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tained the simple scalar form of the convolution structure
of the vector potential (in fact three scalar convolutions).
The integral equation is formulated in terms of the un-
known electric flux density rather than in terms of the
electric field strength. The continuity of the normal com-
ponent of the electric flux density yields a correct imple-
mentation of the boundary condition of the normal com-
ponent of the electric field at the interfaces of (strong)
discontinuity. As a consequence, the present scheme is
much simpler than the one of Joachimowizc and Pichot
[21]. No surface integrals that are directly related to sur-
face charges have to be introduced. Further, it should be
mentioned that expanding the electric-contrast vector po-
tential directly, as opposed to other schemes where only
the current density is expanded such as the CGM-FFT
scheme of Catedra er al. [16], leads to a weaker singular-
ity in the Green’s function. The latter aspect gives rise to
a more accurate numerical evaluation of the (convolution
type) integral operators involved. In contrast to the weak
formulation of the two-dimensional TE-case [20}, the
three-dimensional formulation is presented for different
mesh-sizes in the three Cartesian coordinates.

Finally, it is noted that the continuous convolution of
the Green’s function with the contrast current density is
replaced by a discrete cyclic convolution that can be eval-
uated with a period in the FFT as small as possible. The
Green’s function is the point source solution of a scalar
wave equation. Instead of using this strong form, we em-
ploy its spherical mean, being the normalized integrated
value over some small spherical region. The radius of this
spherical region is directly related to the mesh size of the
discretized configuration.

We present some numerical results for three-dimen-
sional problems. Numerical computations have been car-
ried out for a strongly inhomogeneous, lossy radially lay-
ered sphere. These numerical results are compared with
existing analytical solutions (Mie series) and it is directly
observed that the weak form of the conjugate gradient FFT
method yields excellent results. As second test case, the
bistatic radar cross section of a conducting thin slab is
compared with the bistatic radar cross section of a per-
fectly conducting plate. It is demonstrated that for both
configurations comparable results have been obtained.
Further, the numerical far-field results for some cubical
configurations are compared with results recently pub-
lished in the literature.

These test cases demonstrate that the present weak for-
mulation of the conjugate gradient FFT method can be
considered to be a comparitively simple and efficient tool
for solving scattering problems pertaining to (strongly)
inhomogeneous lossy dielectric objects.

II. THE DOMAIN-INTEGRAL EQUATION

The vectorial position in the three-dimensional space is
denoted by x = (x;, x,, x3). The unit vectors in the x,-,
x,-, and x3-directions are given by i;, i, and i;. The time
factor exp (—iwt) has been used for the field quantities in

the frequency-domain. We consider the problem of scat-
tering by a lossy inhomogeneous dielectric object with
complex permittivity

e(x) = €,(x)¢gy + i?, €))

where ¢, denotes the relative permittivity of the object with
respect to the lossless and homogeneous embedding with
permittivity €y, and where o denotes the electric conduc-
tivity of the object. The incident electric field is denoted
as E' = (EY, E5, E%). In this paper, we formulate the
scattering problem as a domain-integral equation for the
unknown electric flux density D = (D,, D,, D) over the
object domain D as

E'(x) = bx _ (k3 + grad div) A(x),

e(x)

where kg = w(eg uo)l/ 2 and the vector potential A = (4,
A,, Aj) is given by

xeD5 @

Ax) = 1 S . Gix — x")xx')Dx')dx' (3

€0
in which the normalized contrast function x is defined as
_€(x) — ¢
e(x)

Further, the three-dimensional Green’s function G is given
by

x(x) )

exp (itko|x|)

3
arle] xeR". &)

Gx) =

III. TESTING AND EXPANSION PROCEDURE

We first introduce a discretization in the spatial domain
x = (X[, X3, X3). We use a uniform mesh with grid widths
of Ax;, Ax, and Ax; in the x|, x, and x; directions, re-
spectively. For our convenience the discrete values of x
are given by

Xyunp = {M = 3) Ax;,, (N = 3) Axs, (P — 3) Axz},

(6)

denoting the centerpoints of the volumetric subdomains.
The upper-case Latin subscript are bounded, viz. M € [1,
Bl, N € [1, B,] and P € [1, B;]. The scatterer domain is
completely embedded in the rectangular block with di-
mension B, Ax; X B, Ax, X By Ax;. The boundary of
the discretized object now consists of surfaces parallel to
the x;-, x,-, or x;-axis. We assume that the discretized
boundary 3D ° of the scattering domain DS lies completely
in the embedding where x = 0. This is always possible,

- since we can extend the definition of the scattering do-

main D® by extending it with a zero contrast function x.
In each volumetric subdomain with center x,; v p and di-
mension Ax; X Ax, X Ax;, we assume the complex per-
mittivity to be constant with values ey y p. Note that
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jumps in the (complex) permittivity function may occur
atx; = M Ax;, x, = NAx,and x3 = P Axs.

In order to cope with the grad-div operator in (2), we
test the strong form of (2) by multiplying both sides of
the equality sign by a vectorial testing function
w(") px), p = 1,2, 3, and integrate the result over the
domam x € D®. The testing function iy ,(x) =
i M. p(x)i, is a suitably chosen vectorial function that
will be defined later. We then obtain

Sxe ¢ NP(x)El(x)dx

D, (x)
= S ¥ iy p(x) -
xeb$ e(x)

— ka S Vil p(¥) 4, (x) dx

+ S L Op YN (@) div A) de,  (7)
xeD

forp = 1, 2, 3, and where we have used Gauss’ theorem
on each subdomain where d, ﬂvﬁw, p(x) div A(x) is contin-
uously differentiable and by using the continuity of the
normal components of this function through the interfaces
between these subdomains. In view of the derivation of
(7), it is mentioned that for the testing functions
¥y p(x), the partial derivative 9,y 'y p(x) must be
piecewise continuous on the domain D5, At the surfaces
(with normal v) where this property fails, we then require
that v - \y,(lf,’)N p(x¥) must be continuous. Further, v -
\yﬁj’)N p(x) must vanish for x ¢ DS. We expand the gen-
eralized electric flux density, the electric-contrast vector
potential and the incident electric field in a sequence of
vectorial expansion functions ¢ {¥) x(x) = ¢ x(x)i,, g =
1, 2, 3 as follows

A 9 x(x) forxeD®  (8)

mm=%§

4,0 = X Al il forxeD’, )
E.(x) = Z E; Dy x(x)  forx e D°. (10)

Substitution of (8)-(10) in (7), carrying out the diver-
gence and interchanging the order of summation and in-
tegration, we obtain the following weak form of the do-
main-integral equation

@ (
= 2 Z quJKuAfA?)PIJK

T ITKg=1
IJI([ knv p1Jk T w )P:I.]‘K]a
(11)
in which
3
eiRp= 2 U EioifPrii  (12)

LLK g=1

M%I\?)P LJIE = 5 S o \P NP(x) T; Kb}q},x(x) dx,

(13)
vaf)lg)PUK = 0y, S és ‘//%)N,P(x)\”?}x(x) dx, (14)
xre
Wit leirsx = S Vil p(® ¥ k() . (15)
xel

for p = 1, 2, 3 and where §, , denotes the Kronecker

" symbol.

In view of the partial derivatives in (15), the volumetric
rooftop functions [23] are chosen as testing and expansion
functions, viz.

¢MNP(x) = A(x; — xymnp + %Axﬁ 2 Axy)

" Gy — X m v, Py AX)
X II(xs = x3.pm,n.p5 AX3), (16)
M NP(x) =y — xy pmn.p Ax1)

“Alxy — Xppnp + 5 AX2; 2 Ax)

X (x5 = x3,m.n,p5 AX3), )
\LMNP(x) = 0, = X105 AX)

* Oy — Xo,pm8,p5 AX2)

X MA@y — Xynp + 3 Axs; 2 Axs), (18)

in which A = A(y; 2 Ax) is the one-dimensional piece-
wise linear and continuous function, viz. the triangle
function with support 2 Ax, and Il = II(y; Ax) is the
one-dimensional piecewise constant function, viz. the
pulse function with support Ax.

Using these functions of (16)-(18) in (12)-(15), we ob-
tain the following weak formulation of the domain-inte-
gral equation:

3
eyt p Z BPd—onp + ¢PAN 12N
2 2
+ 1§1 ng fg}A%)+1—2,N+J—1,P
2 2
+ 1§1 KZ=:1 EPRAD 1— o N k-1 (19)
2 2
eyinp = 24 tAN - Nes—2p

3
2) 52 2) 4 @
+ 121 6P dnsesap + VAR NI 2.p]

2 2
3 ’
+ Zl KEI XA N -2, P k-1, 20)

J=
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2 2
2
= 20 2 tQAR 1nprk—2
I=1K=1

M

2
1) 4@
+ KZ_;1 AR N -1 pr—2

J

+ Z BPdY N pig-2 + QAT N prx-2]s

@n

in which the coefficients of the vectors b” and ¢‘? are
obtained as

__f
€M-1, N,P
pO — Ax; Axy Axy 2¢q + 2¢q @
6 €M —1,N,P €EM.N, P
€0
€M,N, P
__ €
€EMN-1, .P
b(z) _ A)Cl AXZ AX3 26() 4 260 i (23)
6 EM,N-1,P €MN, P
€0
€M.N,P
%
€EM.N,P—1
Ax, Axy Ax 2 2e
p® = 2T I 2D e~ 7
6 €EM,N,P—1 EM.N.P
€0
€EM,N.P’
c? = Ax; Axy Ax;
1 —1
kg 2
-—— 14|+ (Ax,) 2 s (25)
1 -1
while the coefficients of the matrix ¢? follow from
(» A -1 1 (26)
t = Ax .
P\ 1 -1
The values of e} %) p follow from E%{%) p as
i (1) _ Ax1 AX2 AX3
CMNP T "‘—'_6
AE%Y 1 np + 4EK R + EyY v, @D

i AxyAx Ax
EMNP = “"“6'—‘
AE3R1p + AESR p + ENR0 8, (28)

el (3) _ Axl AXQ AX3

AEYR pr1 + 4ERR p + EfRip—i]. (29

With our particular choice of expansion functions, the
quantities A7y » and e§ p follow from

1 .
Dp <xM_N,p — EAxplp>
d%)N,P = € ’
p = 17 2’ 3’ (30)
APvp=A Lax)i
MNP = Ap \ XN P — D Xplp |
p=123, (3D
ELD = F! 1 :
MNP = Lp \ Xy NP — EAxplp )
p=1223 (32)

The electric-contrast vector potential 4,, is related to the
electric flux density D via (3). Note that with this proce-
dure we have enforced the equality sign of (30)-(32) ex-
actly in a single point. Again, this is a strong form and
we will weaken this form by taking the spherical mean.
The computation of the electric contrast vector potential
is discussed in next paragraph.

Let us define the spherical mean (weak form) of the
electric-constant vector potential as

S Ax + x") dx”
x"}< (1/2)Ax

[A]l (x) = , (33)

"

Slx"| <1/Dax

where Ax = min [Ax;, Ax,, Ax;]. Substitution of (3) in
(33) and interchanging the order of integrations, we ob-
tain

1
[A] (x) = — g [Gl(x — x")x(x")D(x") dx',  (34)
€y ' eDS
in which
S G(x + x") dx"
|x" | <(1/2)Ax
[G]l(x) = (35)
S dxll
x| < (1/2)Ax

Taking the spherical mean of the electric-contrast vector
potential, the integral of (35) can be determined analyti-
cally. Using spherical coordinates together with the ad-
dition theorem of the modified spherical Bessel functions,
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it is easily verified that

(1 — 3 iky Ax) exp G iky Ax) — 1

1761

£ h3(Ax)
[Glx) =

exp Glfx]) | L

sinh (3 iky Ax)

if |x| = 0,

— cosh (5 ikg Ax)}

1 wko Ax)%)x]

Note that, for the limiting case Ax — 0, the weak form
of the Green’s function [G](x), |x| > % Ax, tends to the
strong form of the Green’s function G(x).

As next step, the continuous convolution integral of
(34) has to be replaced by a discrete one. Using a trape-
zoidal integration rule, we arrive at

APy p = Ax; Ax, Ax, M,%J »

(
: GM—M’,N—N’,P——P’XA;).N’,P’dEVIP’),N’,P’a 37

in which p = 1, 2, 3: the discrete values of the normalized
contrast function follow from

0 _ X&m-iap) + XXunp)

XMNP = 2 , 38)
, Xis N + x(x

XD np - X(Xn, N 1,P)2 x( M,N.P)’ (39)
X )+ x(x

XI(S?N,P - X(Eu N, p 1)2 X( M.N,P). (40)

The discrete values of the weakened Green’s function are
given by

Gunp = [G1(M Axy, N Axy, P Axy). (41)

Using the convolution theorem of discrete Fourier trans-
form (DFT), (37) is evaluated numerically by

AP = Ax; Axy Ax; DFT™' {DFT {[ Gy yp}

* DFT {x{v.pdfn r}}- (42)

Note that the subscripts M', N’, and P’ of [G]yy » p 1D
(42) are dictated by (6) and the spatial periodicity of the
discrete Fourier transform.

Let us assume that the domain D of the object lies
completely inside a block

(Mmm - 1) A-xl <x < (Mmax + 1) Axb (43)
(Npin = D Axy < 2 < Nax + 1) Axy,  (44)
(Pmin - 1) AX3 <x; < (Pmax + 1) AX3. (45)
In this volumetric domain we have Mps = M. — Muin
+ 1 meshpoints in the x-direction, Nps = Npay — Nmin
+ 1 meshpoints in the x,-direction and Pps = Ppax — Prin

+ 1 meshpoints in the x;-direction. Based on the ideas of
Barkeshili and Volakis [24], it is easily shown [25] that
(37) is equivalent to (42) inside the object domain DS if
the relevant DFT’s are defined inside a block with Mper
meshpoints in the x;-direction, Npgr meshpoints in the

if x| > %Ax. (36)

x,-direction and Pppr meshpoints in the x;-direction, such
that

v

Mprr = 2(Mps + 1),
Pper = 2(Pps + 1).

\

(46)

Finally, the quantity E ﬁ,,(’,i,) pis given in case the incident
field is taken to be a uniform plane wave. Then, E’ fol-
lows from

E'(x) = & exp (iky 0 - x), (47)

in which € denotes the amplitude of the plane wave and 0
denotes the unit vector of the direction of propagation.
The spherical mean (weak form) of the uniform plane
wave incident field is now defined as

S E'(x + x") dx"
x| </2)Aax

[E'l(x) = (48)

"

Slx"| <(1/2)Ax

The weak form of the incident uniform plane wave is ob-
tained by substitution of (47) in (48) as follows

[E'](x) = € exp (kg0 * x) m

1
sinh <§ ik Ax>

1
I — cosh <— ikg Ax>
E lk() Ax

2

(49)

The latter weak form gives the representations for the

quantity E5/R) p as

EifRp = (Ep1Gan,p = 1 Apiy). (50)
Note that, for the limiting case Ax — 0 the strong form
of the incident uniform plane wave is obtained (cf. (47)).

Collecting all the results, the weak form of the domain-
integral equation is given by (19)-(29), (42) and (50).

This domain integral equation is symbolically written as
e = Ld. (51)

The latter operator equation is solved numerically by ap-
plying a conjugate gradient iterative scheme, where the
DFT’s are computed efficiently using fast Fourier trans-
form (FFT) algorithms.
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TABLE I
COMPUTATION TIME AND STORAGE OF VAX 3100/76 WORKSTATION
Number of CPU-time Computer
Mps X Nps X Pps Mper X Nppr X Pppr Unknowns of One Iteration Storage
7xX7x7 16 X 16 x 16 1176 8 sec 3 Mb
15 x 15 x 15 32 x 32 x 32 10800 0.55 min 5 Mb
31 x 31 x 31 64 X 64 x 64 92256 5 min 18 Mb

IV. NuMERICAL RESULTS

The numerical convergence is measured by the nor-
malized root-mean-square etror Err:
el

Err = &

"o 2

in which |Jr"| denotes the norm of the residual error in
the satisfaction of the operator equation of (51) over the
domain [ of the dielectric object in the nth iteration. All
computations were carried out on a VAX 3100/76 work-
station in double precision arithmetics. The DFT’s are ef-
ficiently computed using fast Fourier transform (FFT) al-
gorithms in single precision only. The iteration process is
stopped when the normalized root-mean-square error falls
below 107>, For the two-dimensional TE scattering prob-
lems, Zwamborn and van den Berg [20]} have demon-
strated that this strong error criterion has to be imposed.
Unless explicitly specified, the incident field is taken to
be a uniform plane wave with (cf. (49))

V/m, e, =0, e =0, (53)
(54)

In all cases we have taken a zero initial estimate. The
bistatic radar cross section follows from [26]

BiRCS (¢, 6) = 10 log (0., (¢, 0)
— 10 log (\}) dB,

€ =

01 =O, 0220, 03= -1.

(55)
in which

o » |E* (6, DI
U0 (0, ) = lim 47R _——HE"(d), NE

R
and where E°(¢, 6) and E’(¢, 8) denote the scattered far-
field and incident far-field vectors, respectively. In Table
I, the computation time needed to evaluate one iteration
on the VAX 3100/76 workstation and the number of un-
knowns in the scattering problem have been presented. 1t
is noted that the VAX Fortran computer code pertaining
to these values is, however, not optimized. Examining
this table reveals that the computation time of each iter-
ation is proportional to (Mppr X Npgr X Pppp)[1 + log,
(Mprr X Nppr X Ppep)].

We firstly consider a radially layered lossy dielectric
spherical object to be present with its origin at x = {a, a,
a}, where a denotes the outer radius of the sphere. It is
noted that for this special test case, analytical results are
obtained with the Mie series [27]. The relative permittiv-
ities and conductivities are €,.; = 72, 0; = 0.9 S / m, and

(56)

107

1072 |

Errxel

0 50 100 150 200 250 300 350 400
number of iterations

10-3

Fig. 1. The numerical convergence ratio rate obtained for the scattering
by a inhomogeneous sphere, ¢, = 72, ¢; = 0.9 S/m and koa, = 0.163,
€.» =71.5,0, = 0.05S/mand kya, = 0.314.

€0 = 7.5, 0 = 0.05 S/m, respectively. The dimensions
are given by kya, = 0.163 and kga, = 0.314. It is noted
that a, denotes the radius of the inner sphere and a, de-
notes the radius of the outer sphere. The frequency of op-
eration is taken to be 100 MHz. Note that Joachimowicz
and Pichot have discussed the two-dimensional counter-
part of this configuration in [21]. The computations are
performed for different mesh sizes of Mps = Nps = Pps
=15 (MDFT = NDFT = PDFT = 32) and MDS = NDS =
Pps = 29 (Mppr = Nprr = Pprr = 64), respectively. The
numerical convergence rate of the iterative scheme is pre-
sented in Fig. 1, while the magnitudes of the components
of the total electric field are presented in Fig. 2.

In order to investigate the discrepancies of the numer-
ical results and the analytical results, we have taken the
discretized sphere of the case Mps = Nps = Pps = 15 as
new object. As next step, this new object has been sub-
divided with Mps = Nps = Pps = 30. The number of
iterations to obtain an error less than 0.1 percent is 325.
From Fig. 3 it is observed that refining the mesh in the
interior of the object hardly yields any improvement. The
same discrepancies between the numerical results and the
analytical results are observed. The latter reveals that the
differences between the analytical and numerical results
are caused by the block approximation of the spherical
boundary. In order to obtain a better approximation of the
spherical boundaries, the discretization of the sphere has
to be improved.

As second test case we consider a thin slab to be present
with its origin at x = {a, a, b}, where the side length of
the slab is equal to 2a = 2\, (kya = 27) and the thickness
of the slab is 2b. Note that Ay denotes the wavelength in
free space. The frequency of operation is taken to be 100
MHz. The slab is subdivided with Mps = Nps = 31 and
Pps = 1 and mesh sizes Ax; = Ax, = Axy = (2\,/31).
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0.6
0.5
0.4

|}

6.3¢
0.2

A x 15x15x15
* 20%x29x29

1

L _
2 —1

Fig. 2. The magnitude of the components of the fotal electric field inside
a lossy inhomogeneous sphere; ¢, ; = 72, ¢, = 0.9 S /m and kya, = 0.163,
€.2=7.5,0, = 0.05S/m and kya, = 0.314. The numerica! results per-
taining to a mesh size of {5 X 15 X 15 are presented by the symbols X
and the numerical results pertaining to a mesh size of 31 X 31 X 31 are
presented by the symbols *. The analytical solution of the inhomogeneous
sphere is presented by the solid line.

It is noted that the height of the slab is 26 = (2)y/31).
The conductivity is taken to be 1000 S /m. It is expected
that the scattering from this latter object is very similar to
the scattering by a perfectly conducting, infinitly thin
plate. Therefore we will compare the bistatic radar cross
section obtained for the slab with the bistatic radar cross
section obtained for the perfectly conducting plate using
the computer code of Zwamborn and van den Berg [14].
The number of iterations to obtain an error less than 0.1
percent amounts to 79 iterations for the plate configura-
tion and 91 iterations for the slab configuration. In Fig. 4
we present the bistatic radar cross section for the perfectly
conducting plate and the lossy slab in the plane § = 90
(90 < ¢ =< 270). It is observed that comparable results
have been obtained for both configurations, as expected.

As third test case we consider a lossless dielectric cube
to be present with its origin at x = {«, a, a}, where the
side length of the cube is equal to 2a = 0.2N\; (kga =
0.27). The relative permittivity is taken to be ¢, = 9. The
frequency of operation is taken to be 100 MHz. In this
test case only, the incident field is taken to be a uniform

| Ba
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0 zy=a
0.15 o 30x30x3 =
0.1
0.05
0
-1 0.5 0 0.5 1
r
2
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”
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Fig. 3. The magnitude of the components of the total electric field inside
a 15 X 15 X 135 discretized lossy inhomogeneous sphere; €, | = 72, 0, =
0.9S/mand kya, = 0.163, ¢, , = 7.5, 5, = 0.05 S /m and kya, = 0.314.
The numerical results pertaining to a mesh size of 15 X 15 x 15 are pre-
sented by the symbols x. The discretized object is refined with a mesh size
of 30 X 30 X 30 and the numerical results are presented by the symbols
o, The analytical solution of the inhomogeneous sphere is presented by the
solid line.

BiRCS 5
(dB)

* BiRCS slab
— BiRCS plate

15 L

-25

.35 =190 {

90 135 180 215 270

Fig. 4. The bistatic radar cross section computed for the 2N\, X 2X, per-
fectly conducting plate is presented by the solid line and the bistatic radar
cross section computed for the 2\, X 27y X (2N\/31) slab with conduc-
tivity 1000 S /m is presented by the symbols *. The frequency of operation
is 100 MHz.

plane wave with the electric field vector parallel to the
x;-axis and propagating along the positive x;-axis, hence

in (49) we have
e = 1V/m, ¢ =0,

€3 = 0, (57)
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9, =0, 6,=0, 6, = +1. (58)

The cube is subdivided with Mps = Nps = Pps = 7. The
number of iterations to obtain an error less than 0.1 per-
cent is 38. In Fig. 5 we present the far-field for the di-
electric cube. The solid curve is obtained using the pres-
ent method, while the symbol © represents the “‘triangle-
patch’’ surface formulation developed by Rao (cf. [28])
and the symbol X represents the ‘‘pulse expansion point
matching’’ volume formulation given by Sarkar et al.
[28]. The far-fields are presented on a logarithmic vertical
scale and all curves are normalized for # = 0. From Fig.
5 it is observed that the far-fields that are computed using
the present method agrees with the far-fields that are com-
puted using the ‘‘triangle-patch’’ surface formulation,
while the ‘‘pulse expansion point matching’’ volume for-
mulation shows some discrepancies. As indicated by Sar-
kar et al. [28], the ‘‘pulse expansion point matching’’
volume formulation gives rise to spurious charge distri-
butions influencing the accuracy of the near-field. As a
consequence, the far-field shows some discrepancies. It is
demonstrated that the weak formulation of the domain-
integral equation does not suffer from this inaccuracy.
As fourth test case we consider a lossy dielectric cube
to be present with its origin at x = {a, a, a}, where the
side length of the cube is equal to 2a = 0.75\; (kga =
2.3562). The conductivity is taken to be 1000 S/m and
the frequency of operation is taken to be 100 MHz. The
cube is subdivided with Mps = Nps = Pps = 7 and Mps
= Nps = Pps = 15, respectively. The number of itera-
tions to obtain an error less than 0.1 percent amounts to
68 and 189 for the 7 X 7 X 7 subdivision and the 15 X
15 X 15 subdivision, respectively. In Fig. 6 we present
the bistatic radar cross section for the lossy dielectric
cube. The dashed line represents the bistatic RCS results
obtained for a subdivision of 7 X 7 X 7, the solid line
represents the bistatic RCS results obtained for a subdi-
vision of 15 X 15 X 15. The symbols © represent the
measured data given by Penno et al. [22] and the symbols
* represent the CGM-FFT results of Catedra er al. [23].
It has been observed that the BiRCS obtained using the
present method and the measured BiRCS results given by
Penno et al. [22] agree very well, while Fig. 6 demon-
strates that the weak formulation of the conjugate gradient
FFT method produces more accurate results than the
CGM-FFT implementation of Catedra et al. [23].
Finally, as fifth test case we consider a lossless dielec-
tric cube to be present with its origin at x = {a, a, a},
where the side length of the cube is equal to 2a = 0.25),
(kpa = 0.7854). The relative permittivity is taken to be
e, = 4. The frequency of operation is taken to be 100
MHz. The cube is subdivided with Mps = Nps = Pps =
15. The number of iterations to obtain an error less than
0.1 percent is 19. In Fig. 7 we present the bistatic radar
cross section in the E-plane (¢ = 0) and the bistatic radar
cross section in the H-plane (¢ = 90). The solid and
dashed curves are obtained using the present method,
while the symbols * and + represent the results presented
by Moheb and Shafai [29] for the E-plane and H-plane,
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Fig. 5. The far fields as a function of 8 computed for a lossless dielectric
cube with e, = 9, ¢ = 0 S/m and kya = 0.628319. The solid lines rep-
resent the results obtained using the present method, the symbols © repre-
sent the results obtained using the surface formulation and the symbols X
represent the results obtained using the volume formulation of Sarkar er al.
[28].
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Fig. 6. The bistatic radar cross section as a function of ¢ computed for a
lossy dielectric cube withe, = 1. ¢ = 1000 S/m and kya = 2.35610. The
results with a mesh size of 7 X 7 X 7 are presented by the dashed line,
while the results with a mesh size of 15 X 15 X 15 are presented by the
solid line. The symbols * represent the measured radar cross section given
by Penno et al. [22] and the symbols © represent the CGM-FFT results of
Catedra et al. [23].
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Fig. 7. The bistatic radar cross section as a function of 6 computed for a
lossless dielectric cube with e, = 4, 0 = 0 S/m and kya = 0.7854. The
results with a mesh size of 15 X 15 X 15 are presented by the solid line
and the approximated results given by Moheb and Shafai [29] obtained
using the n = 1 Miiller formulation is presented by the symbols *.
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respectively. Moheb and Shafai have obtained their re-
sults using the first order Miiller formulation (n = 1) and
state that this approximation for the bistatic radar cross
section is satisfactory. As observed from Fig. 7 their ap-
proximation of the bistatic radar cross section shows some
(large) discrepancies.

V. CONCLUSIONS

In this paper we have presented a three-dimensional
weak formulation of the conjugate gradient FET method
for dielectric scatterers. It is observed that the present
weak formulation yields excellent agreement with the an-
alytical results for the radially layered lossy dielectric
sphere. Modeling the curved boundaries using a cubical
mesh seems to be feasible and the discretization errors
tend to vanish for increasingly finer discretizations. Com-
parison of the numerical results obtained using the weak
formulation of the conjugate gradient FFT method with
the numerical results obtained using other methods dem-
onstrates that the present scheme produces accurate re-
sults.

Since we have maintained the simple scalar convolu-
tion structure of the vector potential, the computation time
of our present method is even less than the computation
time of the conjugate gradient FFT methods discussed in
the Introduction. Further, it is noted that in contrast with
the weak formulation of the two-dimensional TE scatter-
ing problems presented in [20], the present formulation
allows the use of different mesh sizes in each Cartesian
coordinate. The latter enhances the applicability of the
weak formulation to complex, strongly inhomogeneous
structures. Finally, it is mentioned that the extension of
the present formulation to anisotropic objects is rather
straightforward (see [25]).
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